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Language Exposure for Preterm Infants is Reduced Relative to Fetuses
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Objective To assess changes and deficits in language and auditory exposures consequent to preterm birth and
neonatal intensive care unit stay compared with exposures in utero among typically developing fetuses.

Study design We analyzed over 23000 hours of auditory exposure data in a cohort study of 27 typically-
developing fetuses and 24 preterm infants. Extrauterine exposures for fetuses were captured by having preghant
women wear 24-hour audio recording devices. For preterm infants, recording devices were placed in the infant’s
crib. Multilevel linear regressions were conducted to test for group differences and effects of infant sex, maternal
education, and mother’ occupation. A linear mixed-effects model was used to test for an effect of speaker gender.
Results Fetuses were exposed to an estimated 2.6 + 1.8 hours/day of nearby, predominantly female language,
nearly 5 times greater than 32 4 12 minutes/day estimated for preterm infants (P < .001). Preterm infants had greater
daily exposure to electronic sounds (5.1 + 2.5 vs 1.3 + 0.6 hours; P < .001) and noise (4.4 + 2.1 vs 2.9 + 2.8 hours;
P < .05), with 4.7 + 3.9 hours/day of silence. Language and extrauterine sound exposure for fetuses showed a
marked day/night cyclical pattern, with low exposure during nighttime hours, but preterm infants’ exposures
showed significantly less change across the 24-hour cycle (P < .001). Maternal occupation requiring frequent
communication predicted greater language exposure (P < .05).

Conclusions Our findings provide the first comparison of preterm infant auditory exposures to typically-
developing fetuses. Some preterm infants may incur deficits of over 150 hours of language exposure over the pre-
term period. Given known effects of prenatal/preterm language exposure on neurobehavioral outcomes, this
magnitude of deficit is alarming. (J Pediatr 2023; :113344).

n the US, approximately 10% of newborns are born premature.’ Because auditory function begins as early as 23 weeks’
gestation,”” preterm infants undergo a rapid and premature change in auditory experience as they transition from the in-
trauterine acoustic environment to the neonatal intensive care unit (NICU). The intrauterine environment is unique, with
constant, primarily low-frequency sounds of mother’s cardiovascular and digestive systems and voice transmitted to the fetal
ear via amniotic fluid.® Also present are others’ nearby vocalizations, music, and other airborne sounds that impinge on the
abdomen of the mother.*'’ Extrauterine sounds are modified by transmission through abdominal tissue, which provides some
sound attenuation, possibly more pronounced at higher frequencies.'"”'” In contrast, NICU infants are exposed to high sound
levels,''* electronic and mechanical noises,'” and periods of silence,'”'® transmitted via air rather than fluid (Table I). Preterm
infants suffer from a high incidence of neurodevelopmental problems,'” many of which are linked with auditory function,'®*°
including widely reported speech/language deficits.”” >’ Neural mechanisms underlying these impairments are not clear,
although structural abnormalities in cortical gray and white matter for preterm infants’’ > are associated with poorer
language abilities later in childhood.”>
Extrauterine auditory exposures during gestation affect neurobehavioral outcomes. Full-term newborns exhibit behavioral
and neurophysiological responses that distinguish familiar sounds (via exposure in utero) from unfamiliar sounds, including
mother’s voice, mother’s native language, music, and oft-heard speech passages.”’40 The result is a newborn brain primed for
language acquisition.’®*" It has been proposed that abnormal auditory exposures for NICU infants contribute to develop-
mental deficits later in life.*>** However, one critical issue that has never been
assessed is the extent to which NICU auditory exposures differ from typical ex-

posures during the equivalent stage of neurodevelopment. Previous efforts to
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evaluate NICU auditory/language exposures,'>'***** while valuable, have been
limited in the following ways: 1) few 16-hour audio recordings were analyzed
per subject to estimate exposures over a multi-month period' ™'’ 2) no analysis
of a typically-developing fetal group has been conducted; 3) the pattern of expo-
sures across the 24-hour cycle has not been examined. Thus, although it is
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Table I. Putative differences between regularity of
intrauterine and NICU auditory exposures
Typical exposures Womb (via fluid)  NICU (via air)
Heartbeat Always Never
Silence Never Often
Alarms Rarely Often
Biological sounds Always Never
Airborne noise Sometimes Often
Maternal voice (when speaking) Always Sometimes
Non-maternal voices (when speaking) ~ Often Often
High sound levels Unknown Often
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presumed that auditory exposures in the NICU differ from
fetal exposures, the extent to which they differ is unknown.
Consequently, interventions to modify auditory/language ex-
posures in the NICU, although increasingly prevalent,*® lack
meaningful targets for healthy exposures. We addressed these
gaps by analyzing auditory exposures for typically-
developing fetuses and NICU infants. We tested 3 hypothe-
ses: 1) language exposure is greater for fetuses than NICU in-
fants; 2) exposure to electronic sounds and airborne noise is
greater for NICU infants than fetuses; 3) auditory exposures
for fetuses follow a 24-hour day/night pattern, whereas this
pattern is diminished for NICU infants.

This prospective cohort study was approved by institutional
review boards at the University of Illinois Urbana-
Champaign and Carle Foundation Hospital. Mothers pro-
vided written informed consent. Recruitment and data collec-
tion occurred October 2018 through March 2020, and was
discontinued when NICU visitation restrictions began due
to the COVID-19 pandemic. For typically developing fetuses,
pregnant participants were recruited through a university
employee email listserv, online postings, and flyers posted at
community maternity clinics. We recruited 28 pregnant fe-
male participants (age 27-36 year, mean = 31.4 year) and their
fetuses. One participant carried twins. Inclusion criteria for
pregnant participants were: 219 years of age, 220 weeks but
<32 weeks pregnant, and no pregnancy complications. Partic-
ipation was discontinued for 1 participant due to suspension
of data collection consequent to the COVID-19 pandemic.
Families of preterm infants were identified and approached
by a nurse practitioner in the NICU. We initially recruited
families of 37 neonates born very preterm (VPT; <32 weeks’
gestation) from a level III, 48-bed, open layout NICU in
Urbana, Illinois. The initial VPT group included 2 sets of
triplets and 3 sets of twins. Inclusion criteria for VPT infants
were maternal age 219 years and <32 weeks gestational age.
Exclusion criteria for both groups included known or sus-
pected congenital anomaly, infection, or prenatal brain
lesion. All mothers completed a survey including demo-
graphic, social, and economic information. Mothers were
asked to indicate whether their occupation involved frequent
verbal communication with others (“Yes” or “No”) as this
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could affect language exposure for their baby. Pregnant par-
ticipants’ occupations were diverse; aside from 4 university
professors and 3 stay-at-home mothers, there was little over-
lap among participants’ occupations. All participants were
informed that the purpose of the study was to assess daily lan-
guage and auditory exposures for their baby.

Exposure data collection

For fetal exposures, a Language ENvironment Analysis
(LENA)*"** recorder was placed in a fabric pouch, attached
to a necklace, and worn around the neck near the abdomen
of the pregnant participant for a 24-hour period. All LENA
devices were configured by the manufacturer to record
24 hours of audio. During sleep, the recorder was placed at
the bedside. Recordings took place twice per week
throughout the third trimester. Each week the participant
chose 2 days to wear the recorder from a schedule that alter-
nated weekly between Monday/Wednesday/Friday and
Tuesday/Thursday/Saturday. The start time of recordings
was determined by the participant, and differed across partic-
ipants, but remained consistent within participant. Compli-
ance was tracked via instant messaging. Any necessary
removal of the device lasting more than 5 minutes (eg, to
shower) was documented by the subject via instant message.
Individual recordings were excluded from analysis if they
were incomplete or if the participant did not keep the
recorder on her person for at least 23 hours.

For NICU exposures, a LENA recorder was attached to the
inside wall of the crib, near the infant’s head. Although re-
cordings were made inside infant incubators, only open crib
recordings were used in the present analysis due to potential
errors in automated labeling that would occur for sounds
modified drastically by transmission through incubator
walls.”” Recordings were made 3 times per week throughout
NICU stay on an alternating weekly schedule (Monday/
Wednesday/Friday vs Tuesday/Thursday/Saturday). The start
time of recordings was typically in the early morning, but
scheduling issues sometimes necessitated starting recordings
in the evenings. When the infant was removed from their
crib for care, the caregiver removed the recorder and attached
it to an adjacent armchair, near the infant’s head. Individual
recordings were excluded from analysis if the recorder did
not capture a full 24 hours (ie, was accidentally stopped) or
when the recorder was misplaced by the nurse or parent.
Per institutional review board requirements, signage was
placed throughout the NICU explaining that audio record-
ings were being made.

Exposure data analysis

Each recording was processed with the LENA automated
classification algorithm, which segments the audio and as-
signs a category label to each segment, resulting in a duration
for each category.”””' The algorithm classifies each segment
of the audio as being silence or being from 1 of 7 sources: fe-
male adult, male adult, key child, other child, noise, elec-
tronic sound, or overlapping sources. Additionally, the
algorithm classifies the sound as either “near” (representing
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sound that is near the model prediction and/or has an ampli-
tude indicating it was produced near the recording device) or
“far” (representing sound that is far from the model predic-
tion and/or has an amplitude indicating it was not produced
near the recording device).**” Variables included in the pre-
sent analysis are the duration of “near” segments labeled fe-
male adult (algorithm label: FAN), male adult (MAN),
noise (NON), electronic sound (TVN), overlap (OLN), and
silence (SIL), as well as 5 derived variables: adult language
(calculated as the sum of near female adult and near male
adult segments), child language (calculated as the sum of
near key child [CHN] and near other child [CXN] segments),
other (calculated as the sum of all the far segments from all 7
sources), total extrauterine sound exposure (sum of all near
and far segments; ie, all segments except silence), and adult
word count (which is calculated by the LENA software based
on acoustic characteristics of the near female adult and near
male adult categories). The noise variable (NON) is also
referred to herein as “airborne noise” (ie, extrauterine noise)
to distinguish it from biological noise and sounds to which
fetuses are exposed. Mean daily exposures for each category
for each subject were calculated by averaging across all re-
cordings for that subject.

The LENA algorithm has been validated to show reason-
able correlation with human raters.”* Automated labeling
of daylong recordings using LENA and other algorithms
has been conducted by many groups,'®**>**” but is subject
to labeling error.”®”” The following measures were under-
taken to reduce the effect of labeling errors. Outlier values
were initially identified for all variables of interest across all
individual recordings. Following manual inspection of re-
cordings that produced outlier values, recordings were
excluded from the analysis when the outlying values were
due to systematic errors in automated labeling. Daily aver-
ages were calculated for each subject by averaging across all
recordings available for that subject. Following exclusion of
recordings as described above, subjects were excluded from
turther analysis if they had less than six 24-hour recordings
available for averaging, resulting in final group numbers of
27 pregnant women and 24 VPT infants. The final VPT group
included 3 sets of twins.

To assess day/night patterns, we conducted a time-varying
analysis of hourly adult language and total (extrauterine)
sound exposure. For each subject, we first calculated the
mean language exposure in minutes per hour for each hour
of the day (eg, 1-2 PM, 2-3 PM, 3-4 PM, etc.) using all 24-
hour recordings for that subject. A circadian exposure index
was then calculated for each subject as follows. The 16-hour
window containing the greatest amount of language exposure
was determined for each subject. The index was calculated as
the ratio of exposure amount occurring during the 16-hour
window to the total amount of exposure over 24 hours. A
value of 1.0 indicates all exposure came during a single 16-
hour window, whereas a value of 0.67 indicates no pattern
of exposure associated with any 16-hour window. For data
visualization, we also calculated a grand average 24-hour
exposure cycle for each group by averaging mean hourly ex-
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posures across subjects. This procedure was repeated for total
sound exposure.

Statistical analyses

Between-group differences were assessed using multilevel
linear regression, with a random intercept at level 2 for the
nesting of twins. Separate multilevel linear regression models,
adjusting for group, were used to assess the effects of infant
sex, maternal education, and mother’s occupation. The effect
of speaker gender was tested using a linear mixed-effects
model with a fixed factor of group and a random factor of
talker gender. All analyses were conducted in R.”

Over 23 000 hours of auditory exposure data were collected.
For the fetal group, the mean duration of study participation
was approximately 12 weeks (range: 6.5-15 weeks), resulting
in an average of 24 days (576 hours) of exposure data per sub-
ject. Postmenstrual age (PMA) during data collection ranged
from 22 weeks to 41 weeks PMA across fetal participants. For
the VPT group, the mean duration of study participation was
approximately 5 weeks (range: 2-10.7 weeks), resulting in an
average of 13.4 days (321.6 hours) per subject. PMA during
data collection ranged from 26 weeks to 44 weeks PMA across
VPT participants. Table II shows group characteristics.

VPT infants differed from fetuses in daily exposures for
several categories of sound (Figures 1 and 2, Table II).
VPT infants received an estimated 0.53 hour/day (SD:
40.2 hour/day) of exposure to adult language, nearly 5
times less than the 2.6 (£0.6) hour/day estimated for
fetuses (F (1.49) = 245.3, P < .001). These exposures
resulted in adult word count estimates of 7108 (£3091)
words/day for VPT infants and 36 679 (+8873) words/day
for fetuses. There was a main effect of speaker gender, with
greater exposure to female adult language than male adult
language (F (1.49) = 1314, P < .001), and a significant
interaction between speaker gender and group (F
(1.49) = 24.1, P < .001). For fetuses, 69% (1.8 hour/day) of
adult language exposure was female, whereas 88%
(28 minutes/day) of adult language exposure was female
for VPT infants. VPT infants received only 4 minutes/day
of exposure to male speech, while fetuses received 12 times
this exposure (48 minutes/day).

VPT infants had more exposure to electronic sounds
(5.1 £ 2.5 vs 1.3 & 0.6 hour/day; F (1.49) = 56.9, P < .001)
and airborne noise (4.4 + 2.1 vs 2.9 £ 2.8 hour/day;
F (1.49) = 4.6, P < .05) than fetuses. Manual inspection re-
vealed that NICU exposures that were classified as electronic
sounds consisted largely of alarms from monitors and other
medical equipment in the NICU. Finally, whereas fetuses
never experience silence, owing to the presence of mother’s
heartbeat or other biological sounds in utero, VPT infants
spent an estimated 4.7 (£3.9) hours/day in silence (Figure 2).

We observed substantial within-group variability in daily av-
erages for both groups (Figure 1). For example, fetuses ranged
between 1.3 and 3.8 hours/day of exposure to adult language—
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Table II. Group comparisons
VPT infants Fetuses P-value
Participant characteristics
N 24 27
Male, % 50% 56% >.99
Singleton, % 1% 96% .04
Birth gestational age, wk 286 +1.8 389+1.6 <.001
Birth weight, g (N) 1227 + 410 3393 + 472 (26) <.001
Length of NICU stay, d 80.5 = 41.4 -
Race, % .54
White non-Hispanic 92% 74%
Black non-Hispanic 4% 7%
Hispanic 0% 0%
Multiracial/other 4% 19%
Maternal age, y 29+5 31+3 .03
Maternal marital status, married, % 54% 100% .02
Maternal education, % <.001
Some high school 13% 0%
High school degree 17% 0%
Some college 29% 0%
Associate’s degree 13% 4%
Bachelor’s degree 13% 30%
Graduate degree 17% 67%
Maternal occupation requires frequent communication, % 88% 89% 75
Average daily exposures
Adult language, h 0.53 +£0.2 26 +£0.6 <.001
Female adult language, h 0.46 + 0.2 1.8 +05 <.001
Male adult language, h 0.07 + 0.04 079+ 0.3 <.001
Adult word count, words 7108 + 3091 36 679 + 8873 <.001
Electronic sound, h 51+25 1.3+06 <.001
Airborne noise, h 44421 29+28 .04
\ 7

NICU, neonatal intensive care unit; VPT, Very preterm.

a factor of nearly 3—while VPT infants ranged between 0.28
and 1.3 hour/day—a factor of approximately 4.6. After
adjusting for group, maternal education did not predict
adult language exposure (P = .59), nor did infant/fetus sex
(P = 41). However, a maternal occupation involving frequent
communication with others was associated with greater
language exposure after adjusting for group (P < .05). For

the fetal group, number of family members in the home was
positively associated with exposure to child language
(P < .005), but not adult language (P = .54).

Whereas language and total extrauterine sound exposure
cycles for fetuses showed the expected marked day/night
pattern, with low exposure during nighttime hours, VPT in-
fants showed less change across the 24-hour cycle
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Figure 1. Daily auditory exposures for fetuses (blue) and VPT infants (red). Values for fetuses represent extrauterine exposures.
Each data point represents a daily average for 1 participant. Some pregnant women reported using noise machines to sleep at
night, which contributed to the high noise exposure for some fetuses.
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4.7 hrs

Child Language
24 min

Overlap
17 min

Other
8.5hrs

Electronic
5.1hrs

Adult
Language
32 min

Figure 2. Mean daily auditory exposures for fetuses and VPT infants.
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Figure 3. Grand average 24-hour exposure cycle for lan-
guage and all extrauterine sound for fetuses (blue) and VPT
infants (red). Circadian exposure indices are shown as insets.
Shading represents 95% CI.

(Figure 3). Mean circadian exposure indices for VPT infants
were less than those for fetuses for language (0.86 £ 0.06 vs
0.99 £+ 0.01, F (1.56) = 131.1, P < .001) and total sound
exposure (0.69 £ 0.01 vs 0.88 £ 0.1, F (1.56) = 98.2, P < .001).

Our data indicate VPT infants may receive nearly 5 times less
language exposure than fetuses. It is important to consider
this difference over the course of the prenatal/preterm
period. For example, 32 minutes/day of language for a VPT
infant born at 24 weeks’ gestation with an 11-week NICU
stay results in approximately 41 total hours of language expo-
sure. In contrast, exposure of 2.6 hours/day for a fetus results
in approximately 200 hours of exposure over 11 weeks. Given
previously demonstrated effects of prenatal language expo-
sure on neurobehavioral outcomes, a potential deficit of
over 150 hours of language is alarming. Additionally, as sur-
vival rates for infants born prior to 24 weeks of gestation
continue to increase, the change in patient population may
lead to increases in NICU length of stay that could introduce
even greater deficits in exposures.

The primary source of language exposure was female adult
speech, which was expected; however, the ratio of female
adult speech to male adult speech differed between fetuses
and VPT infants. The stark differences in female, male, and
total adult language exposure may shed some light on lan-
guage developmental delays and deficits that are widely
reported for VPT infants.”” >’ Additionally, maternal occu-
pation, specifically the mother’s reported occupation-
related communication habits, affected language exposure
for her baby. The variability of language exposure durations
for fetuses is striking and is worthy of further investigation to
determine whether it is related to neurobehavioral outcomes
later in life.

Language Exposure for Preterm Infants is Reduced Relative to Fetuses 5
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For VPT infants, intrauterine language exposure is traded
for increased electronic sound and airborne noise exposure.
The dominant sound sources for these exposures are essential
life-saving medical equipment and other NICU machinery
that produce mechanical noise and/or electronic alarms.’”
VPT infants also spend long periods in silence, a condition
that never occurs in utero. It is possible that activity-
dependent maturation of the auditory circuitry that occurs
during early developmental stages’’ could be disrupted by
this premature introduction to periods of silence, similar to
how brief periods of hearing loss during early development
result in abnormal neurodevelopment.®"**

Although visual (light/dark) day/night cycles have been
studied in the NICU and have been shown to affect
outcomes,”” *” acoustic day/night cycles and their effects on
NICU infants have not been examined. Language exposure
for VPT infants followed a day/night pattern, but this pattern
was diminished relative to fetuses. Total sound exposure for
VPT infants showed no discernible day/night pattern. The
differences in day/night-patterned exposures between VPT
infants and fetuses are notable because, unlike fetuses, VPT
infants no longer have access to maternal hormonal signals
important for the fetal brain to develop a circadian rhythm
during the third trimester of gestation.’® In the absence of
these signals, environmental stimuli such as light and sound
are potentially useful compensatory sensory cues for entrain-
ment to a circadian rhythm.®

One consideration in interpreting our data is whether fe-
tuses have access to extrauterine language exposures we
captured. Intrauterine recordings using animal models indi-
cate extrauterine speech at conversational sound levels ex-
ceeds the endogenous noise floor and is available to the
fetus.” A common misconception is that the intrauterine
environment is devoid of any extrauterine high-frequency
sounds (eg, some consonants) due to substantial high-
frequency attenuation across the abdominal walls. To the
contrary, human fetuses exhibit motor responses to extra-
uterine sounds at 3 kHz" and 5 kHz,"” at least at later gesta-
tional ages. Both animal and synthetic models suggest that
attenuation at high frequencies is not much greater than
that for lower frequencies, with some higher frequencies
attenuated very little.”” Given these findings, by restricting
the present analysis to language and sounds classified as
“near and clear,””” the most reasonable assumption is that fe-
tuses have access to the exposures we have reported.

A recent trend in hospitals worldwide is to reconstruct
open layout, multibed NICU designs into private, single-
patient rooms.”” A consequence of this redesign is a substan-
tial change to auditory input for NICU patients, with
increased amounts of silence and decreased amounts of lan-
guage, relative to the open layout.'” We have demonstrated
here an already marked reduction in language exposure for
an open layout, multibed NICU. It has been proposed that
reducing language and auditory exposures further with
such reconstruction could lead to auditory deprivation,
with consequences for the developing brain.”” There would
also likely be changes to day/night patterns of exposures for
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single-patient rooms compared to what we have measured
here. Furthermore, the present data represent NICU infants
in open cribs. Due to the attenuation of sound by NICU in-
cubators,"” it is possible that exposures will be further disrup-
ted inside NICU incubators. However, to what extent
neurodevelopmental and language deficits observed for pre-
term infants can be explained by abnormal auditory expo-
sures, and whether differential effects of auditory input vs
other biological and medical factors can be disentangled
remain open and challenging questions.

Another factor that warrants further study is whether the
intrauterine environment ought to be considered the optimal
target for VPT infant auditory exposures. It is possible that
the full-term newborn’s postnatal (eg, in-home) auditory
experience is a more suitable target."” For example, similar
to full-term newborns, VPT newborns have an airborne
acoustic pathway that does not alter sound characteristics
like the fluid-filled intrauterine pathway. The presence of a
newborn infant could lead to increased infant-directed
speech—a distinctive type of vocalization thought to facili-
tate infant language acquisition.”” However, full-term
newborn brains differ substantially from VPT newborn
brains due to the rapid maturation that occurs during the
third trimester.”"’* Given the dependence on extrinsic sen-
sory activity to establish neural circuitry during develop-
ment, it is likely that the VPT newborn brain lacks
sufficiently mature basic auditory neural circuits to capitalize
on potential benefits conferred by increased infant-directed
speech or the aero-acoustic pathway. Thus, we speculate
here that typical auditory exposures during the PMA-
equivalent stage of neurodevelopment are the optimal inputs
for VPT infants prior to full term.

This study was subject to limitations. First, the pregnant
group had higher education level than the group of VPT
mothers, which could have influenced language exposure
for fetuses. The presence of twins in the NICU may have
influenced results because; for example, nearby exposure to
the mother’s voice may have been reduced if the mother
spent time separately with each infant. Our sample size was
small and there may be limited generalizability of our find-
ings. Additionally, because we discontinued data collection
when the COVID-19 pandemic began, we cannot report on
how the pandemic may have affected exposures for both pop-
ulations. Although we did retain a hand-written NICU visi-
tation log, several NICU participants were not compliant in
completing the log, so it is uncertain how parental presence
affected language exposure in our VPT data. It is also un-
known whether adults’ talking was directed toward the
baby, another adult, or on the phone. Although we found
an association between language exposure and mother’s sub-
jective response of whether her occupation required frequent
talking, the subjective question may have been interpreted
differently across participants. Finally, although intrauterine
exposure appears to be important for brain development, it
represents only a component of the language environment
of the first 5 years of life important for brain and lan-
guage development.
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Our findings provide quantitative characterization of
auditory exposures for typically-developing fetuses
compared to NICU infants. As such, these data provide
meaningful targets for interventions designed to optimize
auditory exposures in NICU settings. Such efforts have
included training programs for caregivers to increase lan-
guage use while near infants,”” reading programs,”*’> play-
back of mother’s voice recordings to the infant,*® and noise
reduction programs.”®”® Our data offer additional insights
for the development of future interventions. For example,
if the intrauterine environment is taken as the optimal target
for auditory exposures, a wholistic intervention would focus
on replacing sounds that are overrepresented in the NICU
(ie, noise, electronic sounds, silence) with sounds that are un-
derrepresented (ie, language and biological sounds). B
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physicians, and staff in the Carle Foundation Hospital NICU. We
thank lab members Jenna Rock, Molly Cull, Hannah Smith, Melanie
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