Gender and speech material effects on full-band speech LTASS

Vahid Delaram ${ }^{1}$, Margaret K. Miller ${ }^{2}$, Rohit M. Ananthanarayana ${ }^{1}$, Allison Trine ${ }^{1}$, Emily Buss ${ }^{3}$, G. Christopher Stecker ${ }^{2}$, Brian B. Monson ${ }^{1}$

1 Department of Speech and Hearing Science, College of Applied Health Sciences, University of Illinois Urbana-Champaign 2 Boys Town National Research Hospital, Omaha, Nebraska
3 Department of Otolaryngology/HNS, University of North Carolina at Chapel Hill

Introduction
Extended high-frequency (EHF; >8 kHz) cues play a role in speech recognition, talker head-orientation discrimination, speech localization, speech clarity, and word learning.
The utility of these EHF cues in speech depends on the audibility of EHFs in speech, which in turn depends on speech spectral levels at EHFs.
Gender and speech materials across the different languages are reported to influence speech spectral evalyze the effects of these factors on EHFs.

Some prior data on gender effects were based on longterm average speech spectra (LTASS) up to 12.5 or 16 kHz , missing some portions of the EHF spectrum. ${ }^{1,2}$ Others that used full-band, up to 20 kHz recordings did not test gender effects ${ }^{3}$ or had a limited subject

Speech material effects on the EHF levels have been reported for different languages, ${ }^{2}$ but this effect was not investigated for different speech materials within the same language

Study	Bandwidth $(\mathbf{k H z})$	Talkers	Mic setup
Cox and Moore 1	12.5	$30 \mathrm{~F}, 30 \mathrm{M}$	30 cm at 0°
Byrne et al. 2	16	Not specified	25 cm at 45°
Moore et al. 3	20	$8 \mathrm{~F}, 9 \mathrm{M}$	30 cm at 0°
Monson et al. 4	20	$8 \mathrm{FF}, 7 \mathrm{M}$	60 cm at 0°

Table 1: Summary of methods of studies that have investigated the effects of gender and/or speech material on LTASS.

Aim

- In this study, we investigated the effects of gender and different speech materials on EHF levels for American English using high-fidelity recordings of BKB sentences, digits, and unscripted narratives.
Based on past studies, we hypothesized EHF levels for female speech would be higher than for male speech We also hypothesized that digits would exhibit higher EHF levels compared to BKB sentences and narratives due to a high
English digits

Methods

A. Subjects

- 30 subjects (15 female, 15 male)
- Age range of 21.3-60.5 yr (mean 33.6)
- Native speakers of American English

B. Recordings

Speech material from our corpus of high-fidelity multi-directional recordings
Class 1 precision microphone located 1 m in front of talker's mouth (0°)
48-kHz sampling rate and 24 bits/sample

- Speech material:

Unscripted narrative speech ($\sim 2.5 \mathrm{~min}$)
Digits 0-10
Lists 1-4 of BKB sentences

C. Acoustical analysi

Long-term average speech spectrum (LTASS) calculated using 2048-point FFT, resulting in a frame length of $\sim 43 \mathrm{~ms}$, with a Hanning window and 50% overlap
LTASS converted to ERB scale using 1-ERB-wide analysis bands
D. Statistical analysis

- Linear mixed-effects models tested the effects of gender, speech material, and their interaction on EHF band levels, using subjects as a random factor
- Student t-tests were used to test gender differences in previously reported low-frequencies

Results

[^0] (blue). The shaded regions show range.

UNLEERSITYOF

Results cont.

THE UNIVERSITY
of NORTH CAROL
at CHAPEL HILL N

Results cont.

FIG. 3. Mean LTASS from present and previous studies plotted in third-octave bands on the log scale.

Conclusion
LTASS levels at EHFs are influenced mainly by gender rather than the phonetic content of speech and therefore, EHF cues may be more audible for female speech than male speech.
EHF levels differ markedly across talkers within a gender, differing by up to 15 dB
Gender differences observed in this study may be related to anatomical differences in vocal tract length, size, and differences in fundamental frequency.
Effects of speech material are potentially related to the representation of voiceless fricatives
Differences observed across studies could be due to factors including (1) differences in speech materials used, (2) recording setup and quality of recordings, and (3) high variability of the EHF levels across talkers.

References

Cox, R. M., and Moore, J. N. (1988). "Composite Speech Spectrum for Hearing Aid Gain Prese 102 Byrne, D., et al. (1994).
seeech speecra, 1 . Acoust. Soc. Am. 96 , 2108-2120.
Moore, B.C. J., et al. (2008). "Spectro-Temporal Characteristics of Speech at High Frequencies, and the Potential for Restoration of Audibiity to
People with Mild-to-Moderate Hearing Losss," Ear Hear., 29, 907-922.
Meople with Mild-to-Moderate Hearing Loss," Ear Hear., $29,907-922$.
doi:10.1097/AUD.0b01 3e31218246f6
4Monson, B. .,., et al. (2012). "Analysis of high.-frequency energy in long-
term average spectra of singing, speech, and voicess fricatives,"
term average spectra of singing, speech, and voiceless fricative,
Acoustic. Soc. Am., 132, 1754-1764. doi:10.112111.4742724
Acknowledgments
We thank our study participants. This study was
supported by NIH grant number R01-DC019745.

[^0]: FIG. 1. ERB-scaled mean LTASS of female (red) and male

