At a time when the developing human brain typically receives intrauterine auditory stimulation, preterm infants are exposed to the potentially harsh acoustical environment of the neonatal intensive care unit (NICU). With today’s medical care, preterm infants can be born nearly 4 months premature (around 23-24 weeks’ gestation) and survive to adulthood. However, preterm infants are at higher risk than term-born infants for several auditory and cognitive disorders, including hearing loss, auditory neuropathy, auditory processing disorder, speech/language developmental delays, autism, and ADHD. Our research in this area focuses on the NICU acoustic environment and neonatal medical care to identify potentially noxious acoustic stimuli and/or ototoxic medications and treatment. We also utilize neuroimaging (MRI) and neurophysiological (auditory brainstem response) techniques to track auditory neural development in preterm infants. The ultimate goal of this research is to (1) develop interventions that will optimize auditory experience for preterm infants to (2) promote healthy auditory brain development, speech perception, and language acquisition during infancy and childhood. This research has been featured by our institution and in the news. This project is currently funded by a grant from the National Institute on Deafness and other Communication Disorders (NIDCD).